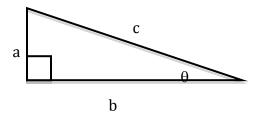
AP Physics 1 Summer Work 2018

	Name _		Period
1. Make sure to read	are a review of the prerequisited all directions throughout the ovide. Final answers can be in t	packet. All work mus	st be completed on the pages
	gible and linear, and I must be page. Mark your final answers		-
Your completed sum	mer work is due the first day o	of class.	
book or internet for r	m another student for your ov eference. No physics is neede me at jrhody@lcscmail.com	= :	
Significant Figures an	nd Scientific Notation Review		
1.) How many signific	cant figures do the following n	umbers have?	
a.) 6.001	Answer:	d.) 27.00	Answer:
b.) 0.0080	Answer:	e.) π	Answer:
c.) 206,000	Answer:		
Directions: Find the f of significant figures. 2.) (5.0x10 ⁻⁸)(2.9x10 ²	following. Final answers shoul	ld be in scientific nota 3.) (3.25x10 ⁴ + 7.4x2	

4.)
$$6.000 \times 10^{-11} \frac{1.00 \times 10^{26}}{2.00 \times 10^{7}}$$

$$5.) \ \frac{8400}{1.2 \times 10^7}$$

Unit Conversions Review


6.) Finish the SI prefix table below. Follow the example of the centi- prefix. You will need to memorize these.

Symbol	Name	Numerical Equivalent
n		
μ		
m		
С	centi	10 ⁻²
k		
М		
G		

- 7.) 16.7 kilograms is how many grams?
- 8.) 560 nm is how many meters?
- 9.) 15 years is how many seconds?
- 10.) 8.99×10^9 seconds is how many years?
- 11.) 2.998×10^8 m/s is how many kilometers per hour?

Trigonometry Review

Directions: Use the figure below to answer problems 15-25. Simplify as much as you can.

12.) Find *c* if given *a* and *b*.

13.) Find a if given b and c.

14.) Find a if given c and θ .

15.) Find b if given a and θ .

16.) Find c if given b and θ .

17.) Find θ if given b and c.

18.) Find θ if given a and b.

19.) If a = 2.0 and c = 7.0, what is b?

- 20.) If c = 10.0 and $\theta = 60^{\circ}$, what is *b*?
- 21.) If a = 12.0 and $\theta = 30^{\circ}$, what is *b*?

24.) Find the length of an arc with a radius of 6.0 m swept across 2.5 radians.

25.) Find the length of an arc with a radius of 10.0 m swept across 100 degrees.

Algebra Review

Directions: Solve the following equations for the given variable and conditions. Simplify if needed.

Example: 2x + xy = z. Solve for x.

$$x(2+y) = z$$

$$x = \frac{z}{2+y}$$

26.)
$$v_1 + v_2 = 0$$
. Solve for v_1 .

$$a = \frac{v}{t}.$$
 Solve for t .

28.)
$$v_f^2 = v_i^2 + 2ad$$

A.) Solve for v_i .

29.)
$$d_f = d_i + v_o t + \frac{1}{2} a t^2$$

A.) Solve for v_o .

B.) Solve for t, if $v_o = 0$.

C.) Solve for t, if $d_i = d_f$.

30.)
$$F = m \frac{v_f - v_i}{t_f - t_i}$$
A.) Solve for v_f , if $t_i = 0$.

B.) Solve for t_f , if $v_f = 0$ and $t_i = 0$.

31.)
$$a_c = \frac{v^2}{r}$$
. Solve for v .

 $mg\sin\theta = \mu mg\cos\theta$. Solve for θ .

33.)
$$\frac{1}{2}mv_f^2 + mgh_f = \frac{1}{2}mv_i^2 + mgh_i$$

A.) Solve for h_f , if $h_i = 0$ and $v_f = 0$.

B.) Solve for v_f , if $h_f = 0$.

34.)
$$Ft = mv_f - mv_i$$
. Solve for v_f .

35.)
$$m_1 v_{i,1} + m_2 v_{i,2} = (m_1 + m_2) v_f$$
. Solve for $v_{i,2}$.

36.)
$$m_1 v_{i,1} + m_2 v_{i,2} = m_1 v_{f,1} + m_2 v_{f,2}$$
. Solve for $v_{f,2}$ if $v_{i,1} = 0$.

37.)
$$(F_1 \sin \theta)r_1 + (-F_2 \sin \phi)r_2 = 0$$
. Solve for r_2 .

38.)
$$-kx + m(-g) = 0$$
. Solve for m .

39.)
$$F_g = G \frac{m_1 m_2}{r^2}$$
. Solve for *r*.

40.)
$$L-L\cos\theta = \frac{v^2}{2}$$
 Solve for L.

41.)
$$\frac{mv^2}{R} = G\frac{Mm}{R^2}$$
. Solve for v . 42.) $T = 2\pi\sqrt{\frac{L}{g}}$. Solve for g .

43.)
$$\frac{1}{2}mv_f^2 + \frac{1}{2}kx^2 = \frac{1}{2}mv_i^2 + mgh_i$$
. Solve for x if $v_f = 0$.

44.)
$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$$
. Solve for R_T

Miscellaneous

Directions: Simplify without using a calculator. Remember to show all of your work.

45.)
$$\frac{1}{4} + \frac{1}{6}$$

46.)
$$\frac{1}{3} + \frac{1}{18}$$

47.) Consider $z = \frac{x}{v}$, c = ah, l = m - n, or $r = \frac{s^2}{t^2}$.

- a.) As x increases and y stays constant, z ______.
- b.) As y increases and x stays constant, z ______.
- c.) As x increases and z stays constant, y ______.
- d.) As *a* increases and *c* stays constant, *b* ______.
- e.) As c increases and b stays constant, a ______.
- f.) As *b* increases and *a* stays constant, *c* ______.
- g.) As *n* increases and *m* stays constant, *l* _______.
- h.) As *l* increases and *n* stays constant, *m* ______.
- i.) If s is tripled and t stays constant, r is multiplied by ______.
- j.) If *t* is doubled and *s* stays constant, *r* is multiplied by ______.

Systems of equations

Conceptual Question:

- 48.) How many equations are needed to solve...
 - a.) for 1 unknown variable?
 - b.) for 2 unknown variables? _____
 - c.) for 3 unknown variables? _____

Use the equations in each problem to solve for the specified variable in the given terms. Simplify. 49.) $F_f = \mu F_N$ and $F_N = mg\cos\theta$. Solve for μ in terms of F_f , m, g, and θ .

50.) $F_1 + F_2 = F_T$ and $F_1 \cdot d_1 = F_2 \cdot d_2$. Solve for F_1 in terms of F_T , G_1 , and G_2 .

51.) $F_c = ma_c$ and $a_c = \frac{v^2}{r}$. Solve for r in terms of F_c , m, and v.

52.) $T = 2\pi \sqrt{\frac{L}{g}}$ and $T = \frac{1}{f}$. Solve for L in terms of π , g, and f.